Numerical simulation of propulsive aerodynamic profiles
Annotation
The problem of creating high-lift propulsive aerodynamic is considered. A method was developed for constructing an aerodynamic profile by solving the inverse problem of aerodynamics. The dependence of the lifting force of this profile on the volume of air sucked from its upper surface and from the angle of attack is studied. The profile under study was developed on the basis of the well-known Griffin/Goldschmid profile with air suction at the upper critical point. Three aerodynamic profiles have been developed. The first profile has a flat lower surface to obtain the ground effect. The second profile is similar to the first but has a slit nozzle near the trailing edge. The third profile is similar to the second but has a non-flat bottom surface and increased thickness. The solution of the inverse problem of aerodynamics was used to construct aerodynamic profiles within the model of an ideal gas. The pressure distribution on the upper part of the profile, its construction height and the range of angles of attack are from 0° to 16°, as well as the degree of rarefaction up to 0.5 atm in the gap through which the air was taken were set. For the second and third profiles, the ratio of the amount of air ejected through the nozzle to the amount of air taken from the upper surface of the profile was set. This ratio ranged from 50 % to 200 %. Numerical calculations were performed for each variant using the Spalart-Allmaras turbulence models and the Transition Shear Stress Transport (SST) and Langtry model. The parameters of the turbulence models were adjusted according to known reference data. The Reynolds number was in the range of 1.5·105–1.5·106. The profiles have a high lift coefficient Cy = 3–3.4 which is achieved when creating a vacuum in the air intake of 0.5 atm. Cy depends on the angle of attack almost linearly up to the maximum values. The greater the air flow through the slot nozzle, the greater is the Cy at a vacuum in the air intake of 0.5 atm. Significance for practical application. The developed profiles have a large thickness and create traction. These profiles are convenient to use in aircraft with large internal volumes, for example, those running on hydrogen fuel.
Keywords
Постоянный URL
Articles in current issue
- Influence of the dimension, geometry, and orientation of nanostructures on the distribution of the electric field in matters of enhancing of Raman scattering
- Optical properties of planar plasmon active surfaces modified with gold nanostars
- Application of bioradiophotonics methods for the processing of bioelectric signals
- Automatic recognition of internal structures in translucent objects based on hologram-moire interferometry.
- Application of Neural Network and Computer Vision Technologies for Image Analysis of Skin Lesion
- Implementation of digital holographic interferometry for pulsed plasma studies
- Polychromic light source for the realization of multispectral processing method of skin malignant lesions images
- Application of additional high-frequency modulation to reduce influence of residual amplitude modulation LiNbO3 phase modulator on fiber optical gyroscope signal
- Optimization of the optical scheme of a photodetector module operating in the spectral range of 1.3–1.6 μm
- Residue feature analysis with empirical mode decomposition for mining spatial sequential patterns from serial remote sensing images.
- Adaptive nonlinear motion parameters estimation algorithm for digital twin of multi-link mechanism motion trajectory synthesis
- Investigation of spectral-luminescent properties of cesium CsPb(BrCl)3 quantum dots in fluorophosphate glasses
- Investigation of optical phenomena in multispectral matrix photodetector based on silicon
- The impact of yttrium aluminum garnet stoichiometry deviation on the conversion efficiency of tetravalent chromium ions
- Influence of low temperatures and thermal annealing on the optical properties of InGaPAs quantum dots
- Pressure control in material extrusion additive manufacturing
- An enforced non-negative matrix factorization based approach towards community detection in dynamic networks
- Visual display system of changes in physiological states for patients with chronic disorders and data transmission via optical wireless communication.
- Ice reconnaissance data processing under low quality source images
- Korsakov I.N., and othersPrediction of fatal outcome in patients with confirm COVID-19
- Generation of the weakest preconditions of programs with dynamic memory in symbolic execution
- On the possibility of expanding the studied dynamic ranges in thermal anemometry
- The beating effect in uniaxial oriented polymer materials
- Numerical method for calculating the nozzle thrust of a wide-range rocket engine
- Numerical simulation of propulsive aerodynamic profiles